GILLETTE, Wyo. — The rolling prairie lands of northeastern Wyoming have been a paradise of lush, knee-deep grass for sheep, cattle and pronghorn antelope this summer.
But it’s a different green — greener energy — that geologist Fred McLaughlin seeks as he drills nearly two miles (3.2 kilometers) into the ground, far deeper than the thick coal seams that make this the top coal-mining region in the United States. McLaughlin and his University of Wyoming colleagues are studying whether tiny spaces in rock deep underground can permanently store vast volumes of greenhouse gas emitted by a coal-fired power plant.
This is the concept known as carbon storage, long touted as an answer to global warming that preserves the energy industry’s burning of fossil fuels to generate electricity.
So far, removing carbon dioxide from power plant smokestacks and pumping it underground hasn’t been feasible without higher electricity bills to cover the technique’s huge costs. But with a $2.5 billion infusion from Congress last year and now bigger tax incentives through the Inflation Reduction Act passed by Congress on Friday, researchers and industry continue to try.
One goal of McLaughlin’s project is to preserve the lifespan of a relatively new coal-fired power plant, Dry Fork Station, run by Basin Electric Power Cooperative. State officials hope it will do the same for the whole beleaguered coal industry that still underpins Wyoming’s economy. The state produces about 40% of the nation’s coal but declining production and a series of layoffs and bankruptcies have beset the Gillette area’s vast, open-pit coal mines over the past decade.
While the economics of carbon storage remain uncertain at best, McLaughlin and others are confident in the technology.
“The geology exists,” McLaughlin said. “It is a resource we’re looking for — and the resource is pore space.”
HOW IT WORKS
By pore space, McLaughlin doesn’t mean skin care but microscopic spaces between grains of sandstone deep underground. Countless such spaces add up: Enough, he hopes, to hold 55 million tons (50 million metric tons) of carbon dioxide over 30 years.
McLaughlin and his team used the same drill rigs as the oil industry to bore their two wells almost 10,000 feet (3,000 meters), taking core samples from nine geological formations in the process. The researchers will study how injection at one well, using saltwater as a stand-in for liquid carbon dioxide, could affect fluid…
Click Here to Read the Full Original Article at ABC News: Business…