Just like being trapped within a spider’s web drastically changes a fly’s life, galaxies ensnared in the vast cosmic web are dramatically and irreversibly altered.
Now, scientists from the University of Kansas are aiming to better understand the mechanisms at play in shaping clusters of galaxies as they travel through a cosmic web of different environments.
KU professor of physics and astronomy Gregory Rudnick is leading the effort, which involves recreating the cosmic web in a computer simulation, then studying gas content and star-formation properties of galaxies as they move through that web. The effort will use images of around 14,000 galaxies from the DESI Legacy Survey, the Wide-field Infrared Survey Explorer (WISE) and NASA’s Galaxy Evolution Explorer (GALEX); The team will collect additional observations with Siena’s 0.7-m Planewave telescope.
“The primary objective of this project is to comprehend the impact of environmental factors on the transformation of galaxies,” Rudnick said in a statement. “In the universe, galaxies are spread in a non-uniform distribution characterized by varying densities. These galaxies aggregate into large clusters, comprising hundreds to thousands of galaxies, as well as smaller groups, consisting of tens to hundreds of galaxies.”
Related: The mystery of vast ‘cosmic ORCs’ — odd radio circles that encompass entire galaxies — may be solved
Galaxies can sit in clusters or groups, or they may dwell in more isolated, lower-density regions of the universe called “the field,” Rudnick pointed out.
Whereas previous studies that simulated the cosmic web and galaxies within have compared galaxies in clusters and groups to those alone in the field, they have neglected to factor in elongated filamentary structures of gas, dust and stars that connect the clustered kind.
Rudnick and colleagues factored in this cosmic highway, focusing on the filamentary environments galaxies encounter, how the galaxies are channeled into groupings and clusters in the first place, and how the filaments affect their evolution.
“Galaxies follow a path into these filaments, experiencing a dense environment for the first time before progressing into groups and clusters,” Rudnick said. “Studying galaxies in filaments allows us to examine the initial encounters of galaxies with dense environments.”
Most galaxies that enter the…
Click Here to Read the Full Original Article at Space…