Researchers in South Korea are developing a constellation of satellites that could reveal what goes on in the vicinity of supermassive black holes like never before.
The constellation, dubbed Capella, is a brainchild of Seoul National University astronomy professor Sascha Trippe. An expert in black holes, Trippe has grown frustrated with the limitations of humanity’s existing instruments for observing black holes and concerned that unless major technological advances are made, research may soon reach a “dead end.”
When the first-ever image of a supermassive black hole — the one at the center of the Messier 87 galaxy some 55 million light-years away from Earth — was revealed to the world in 2019, it caused a sensation. It showed a glowing ring the shape of a donut, enclosing an eerie dark spot. It confirmed that black holes, these mind-boggling hotspots of gravity so potent that not even light can escape from them, indeed exist. In 2022, an image of the black hole at the center of our own galaxy, the Milky Way, followed. As captivating as the images were, for researchers like Trippe, they were nowhere near perfect.
These imperfections are a result of the limitations of the Event Horizon Telescope (EHT), a planet-wide network of radio telescopes that acts like a single planet-wide observatory thanks to a technique known as very long baseline interferometry.
“The problem is that at any given point in time, each pair of antennas [of EHT] only measures one point of the target image,” Trippe told Space.com. “You end up with an image that is mostly empty and requires a lot of processing. For that reason, we miss a lot of structure, because features under a certain size simply cannot be imaged.”
For example, astronomers know that a powerful jet of hot gas blasts from the Messier 87 black hole at the speed of light. This jet, however, cannot be seen in the famous 2019 image.
One way to improve the resolution of black hole images is to measure emissions of radio signals that have higher frequencies and thus shorter wavelengths. But that is impossible from the surface of our planet because water vapor present in Earth’s atmosphere mostly absorbs this signal.
Radio telescopes on satellites would have an unobstructed view of this kind of radiation. They would also solve two additional problems. The Capella satellite constellation envisioned by Trippe and his colleagues would…
Click Here to Read the Full Original Article at Latest from Space…